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The uniform motion of two constant loads moving in opposite directions along two
infinite parallel strings on an elastically supported membrane is studied. The problem is
analyzed for arbitrary ratios of the velocities of the loads and the wave velocities in the
strings and the membrane. The displacements of the system are calculated and presented
as deflection profiles of the strings and membrane. Further, the lateral forces are
determined, acting at the strings and loads due to the interaction through the membrane.
For subcritical velocities of the loads, an analogy is shown with gravitational interaction.
For cases in which one of the loads moves transcritically or supercritically, the lateral force
acting at the other load is shown to have an impact character.
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1. INTRODUCTION

For the design of two parallel high-speed tracks it is of practical interest to understand
the peculiarities of the wave-processes in the sub-soil and tracks when two high-speed
trains are passing each other at sub-, trans- or supercritical velocities. In particular, the
influence of one of the tracks on the dynamic response of the other is relevant. In fact,
when two trains are passing at a subcritical speed the stationary spatial eigenfields, which
are moving with the trains, partly overlap especially when the distance between the tracks
is small. Further, the resulting interaction force has a lateral component, which might
affect the stability of continuous welded track. Moreover, when the train is moving trans-
or supercritically it generates waves in the sub-soil and (or) the track due to the
Mach-effect. In this case, the excited wave field is not localized near the train, but
propagates along the surface. It is clear that this wave field can affect the other track and
train and furthermore, due to the reflections from the other track, affect the source. The
main purpose of this paper is to demonstrate qualitatively these phenomena.

The analysis of the wave process in a track on a sub-soil due to a high-speed train has
recently been investigated by using a model consisting of a uniformly moving load along
a Euler–Bernoulli beam model on a half-space [1–3]. The importance of the interaction
of the beam-waves and the surface waves was shown. It is too complicated to extend this
model for the analysis of the case representing a double track. However, for qualitative
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understanding of the processes in both the track and the surface it is sufficient to consider
a simpler model of the ‘‘track–subsoil’’ interaction. Therefore, the model is extended to
consist of a string on an elastically supported membrane, which was introduced in
reference [4].

In this paper, the model is extended to two parallel strings on an elastically supported
membrane. This model can be used to study the mechanical interaction through the surface
between two objects moving along the string.

Here the steady–state behaviour of the system due to two constant loads moving in
opposite directions along the strings will be determined. The lateral forces on the strings
and loads will be determined for sub-, trans- and supercritical velocities, showing a kind
of analogy, for the subcritical velocities, with Newton’s law of gravitational interaction.
For trans- and supercritical motions, the lateral forces show an impulsive character.

2. MODEL

Two identical infinite parallel strings on an elastically supported membrane are
considered. Along each string a constant load is uniformly moving in an opposite direction
as depicted in Figure 1, where d' is the distance between the strings. It is assumed that
the strings are in continuous contact with the membrane at the lines y'=−d/2, y'= d'/2.
The tension in the density of each string is the same.

The equations for the vertical displacements of the coupled system of the elastically
supported membrane and the strings are

U'mt 't ' − c2
m (U'mx'x' +U'my'y')+ m2U'=−(1/r'){d(y'− d'/2){U's1t 't ' − c2

s U's1x'x' +P	 1 d(x'+V1 t')}

+ d(y'+ d'/2){U's2t 't ' − c2
s U's2x'x' +P	 2 d(x'−V2 t')}},

−aQ x', y', t'Q+a,

U'm(x', y'= d'/2, t')=U's1(x', t'), U'm(x', y'=−d'/2, t')=U's2(x', t'). (1)

Here c2
m =Nm/rm, c2

s =Ns/rs2, m= k/rm, r'= rm/rs, P	 1 =P'1 /rs, P	 2 P	 '2 /rs; U'm(x, y, t) and
U's1(x, t), U's2(x, t) are the vertical displacements of the membrane and the strings;
respectively, Nm, Ns are the membrane and the string tensions, respectively; cm , cs are the
wave velocities in the membrane and in the string, respectively; k is the stiffness of the
elastic foundation of the membrane per unit square; rm is the mass of the membrane per

Figure 1. Model and reference system.



     727

unit area and rs is the mass of the string per unit length; and P'1 , P'2 are the constant loads.
The equations (1) are put into dimensionless form by introducing

t= t'm, x, y= x'm/cs , y'm/cs , d= d'm/cs , Um,sj =U'm,sjm/cs , j=1, 2,

resulting in

Um
tt − a2(Um

xx +Um
yy )+U=−(1/r){d(y− d/2){Us1

tt −Us1
xx +P1 d(x+ b1 t)}

+ d(y+ d/2){Us2
tt −Us2

xx +P2 d(x− b2 t)}},

−aQ x, y, tQ+a,

Um(x, y= d/2, t)=Us1(x, t), Um(x, y=−d/2, t)=Us2(x, t), (2)

where a= cm /cs , r=(cs /m)r', bj =Vj /cs , Pj =P	 j /c2
s , j=1, 2.

3. GENERAL SOLUTION

To solve the system (2) it is sufficient to derive the solution for one load only, for instance
for the load P1 (P2 =0). Then the solution for two loads can be obtained by superposition.
We therefore apply the following exponential Fourier transforms over time and
spatial co-ordinates to system (2) with P2 =0. (Um

1 denotes the displacement of the
membrane):

Wm(v, k1, k2)=g
a

−a g
a

−a g
a

−a

Um
1 (x, y, t)exp{i(vt− k1 x− k2 y)} dt dx dy,

Wsj(v, k1)=g
a

−a g
a

−a

Usj(x, t)exp{i(vt− k1 x)} dt dx, j=1, 2.

This gives

Wm(v, k1, k2)=−
1

rDm (v, k1, k2) 6Ds (v, k1)exp0−i
k2 d
2 1Ws1(v, k1)

−2pP1 d(v+ k1 b1)exp0−i
k2 d
2 1+Ds (v, k1)exp0i k2 d

2 1Ws2(v, k1)7,

(3)

where Dm (v, k1, k2)=v2 − a2(k2
1 + k2

2 )−1 is the dispersion relation of the membrane on
the elastic foundation and Ds (v, k1)=v2 − k2

1 the dispersion relation of the string. The
relation between the image of the membrane displacements and the images of the string
displacements, representing the compatibility conditions in system (2), gives

g
a

−a

Wm(v, k1, k2)exp0+i
k2 d
2 1 dk2 =2pWs1(v, k1),

g
a

−a

Wm(v, k1, k2)exp0−i
k2 d
2 1 dk2 =2pWs2(v, k1).
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Substituting the expression for Wm(v, k1, k2) into the compatibility conditions, one obtains
a linear system of algebraic equations with respect to Ws1 and Ws2:

Ws1(x−1(v, k1)+Ds (v, k1))+Ws2Ds (v, k1)exp0i d
a

s(v, k1)1=2pP1 d(v+ k1 b1),

Ws1Ds (v, k1)exp0i d
a

s(v, k1)1+Ws2(x−1(v, k1)+Ds (v, k1))

=2pP1 d(v+ k1 b1)exp0i d
a

s(v, k1)1, (4)

where

x(v, k1)=
1

2pr g
a

−a

dk2

Dm (v, k1, k2)
=

1
igs(v, k1)

,

g=2ar, s(v, k1)=zv2 − a2k2
1 −1, Im zv2 − a2k2

1 −1q 0.

Solving the system of equations (4), one finds for Ws1 and Ws2,

Ws1 =
2pP1 d(v+ k1 b1)

S2(v, k1)−0Ds (v, k1)exp0i d
a

s(v, k1)11
2

×6S(v, k1)−Ds (v, k1)exp0i 2d
a

s(v, k1117,

Ws2 =
2pigs(v, k1)P1 d(v+ k1 b1)

S2(v, k1)−0Ds (v, k1)exp0i d
a

s(v, k1)11
2
exp0i d

a
s(v, k1)1, (5)

with S(v, k1)=Ds (v, k1)+ igs(v, k1)=v2 − k2
1 + igzv2 − a2k2

1 −1 being the
dispersion relation of one string interacting with the elastically supported membrane.
Therefore, the determinant of system (4),

det (v, k1)= (v2 − k2
1 + igzv2 − a2k2

1 −1)2 − (v2 − k2
1 )2exp0i 2d

a
zv2 − a2k2

1 −11 (6)

is the dispersion relation of the system, two strings interacting with the elastically
supported membrane. Expression (6) consists of two members. The first member describes
the ‘‘one string part’’ [4] and the second member (with the typical exponential multiplier)
describes the influence from the other string.
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Substitution of the expressions for Ws1(v, k1) and Ws2(v, k1) from equations (5) into
equation (3) results in

Wm(v, k1, k2)=
2pigs(v, k1)P1 d(v+ k1 b1)

rDm (v, k1, k2)0S2(v, k1)−D2
s (v, k1)exp0i 2d

a
s(v, k1)11

×6S(v, k1)exp0−i
k2 d
2 1−Ds (v, k1)exp0i k2 d

2 1exp0i d
a

s(v, k1)17.

(7)

Hence, the steady state solution of the membrane displacements due to a uniformly moving
constant load along string 1 has the form

Um
1 (x, y, t)

=
P
2p g

a

−a g
a

−a

igs(k1 b1, k1)exp{i(x+ b1 t)k1}

rDm (k1 b1, k1, k2)0S2(k1 b1, k1)−D2
s (k1 b1, k1)exp0i 2d

a
s(k1 b1, k1)11

×6S(k1 b1, k1)exp6i0y−
d
21k27−Ds (k1 b1, k1)exp6i0y+

d
21k2 7

×exp0i d
a

s(k1 b1, k)17 dk2 dk1 =
P1

2p g
a

−a

×
exp{i(x+ b1 t)k1}

00(b2
1 −1)k2

1 + igz(b2
1 − a2)k2

1 −11
2

− (b2
1 −1)2k4

1 exp0i 2d
a

z(b2
1 − a2)k2

1 −111
×6((b2

1 −1)k2
1 + igz(b2

1 − a2)k2
1 −1)exp6iby−

d
2b z(b2

1 − a2)k2
1 −1

a 7
−(b2

1 −1)k2
1 exp6 iby+

d
2b z(b2

1 − a2)k2
1 −1

a 7exp0i d
a

z(b2
1 − a2)k2

1 −117 dk1, (8)

with Im z(b2
1 − a2)k2

1 −1q 0. By using this expression one can easily obtain the solution
of the problem (2) for two moving loads by superposition,

Um(x, y, t)=Um
1 (x, y, t)+Um

2 (x, y, t), (9)

where the expression for Um
2 (x, y, t) is given by equation (A1) in the Appendix.

From the expression for the displacement of the system of the membrame and the two
strings (8), one can derive the critical velocity of the load. Integral (8) diverges for
{x+ b1 t=0, y= d/2} when b1 =1 and aq 1,\ (V1 = cs , cs Q cm ). Then the displace-
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ment of the elastic system under the load is infinite. In this case the integral (8) can be
rewritten in the form

Um(j= x− b1 t, y)

=−
P	

2pz(a2 − b2
1 ) g

a

−a

exp{iar sinh (x+iq)} dx+ {non-diverging part}, (10)

where

a=
1
a
, r2 =

j2

(1− (b2
1 /a2))

+ y2, sin (q)=
y
r
, cos (q)=

j

z1− b2
1 /a2

, b1=1.

Evidently the integral (10) diverges when r=0(j=0, y=0). Moreover, if a=1,
b1 =1\ (V= cs , cs = cm ), the displacement of the whole system is infinite (for t:a). It
is clear, that the same holds for a one-string system [4].

For the integration of the expression (8) or (A1) one has to know the location of the
singular points of the integrand, and thus has to solve the transcendental equation

R(k1)= (ak2
1 + igzbk2

1 −1)2 − a2k4
1 exp(iczbk2

1 −1)=0, with Im zbk2
1 −1q 0.

where

a= b2
j −1, b= b2

j − a2, c=2d/a, bj =Vj /cs , j=1, 2. (11)

A convenient method to determine the number of roots of equation (11) is by use of
Rouche’s theorem; see reference [5]. First, one represents the function R(k1) in the complex
k1 -plane as a single-valued function by introducing branch cuts along

−=w(k1) =E−h, hE =w(k1) = with Im w(k1)=0 for bq 0,

−i=w(k1) =E−ih, ihE i=w(k1) = with Im w(k1)=0 for bQ 0,

h=1/z=b =, w(k1)=zbk2
1 −1.

Next one separates R(k1) in two parts as follows:

R(k1)= f+ (k1)f− (k1), R(k1)=0c, f+ (k1)=0 and f− (k1)=0,

where

f2 (k1)= g(k1)2 r(k1), g(k1)= ak2
1 + igzbk2

1−1, r(k1)=ak2
1 exp(i(c/2)zbk2

1−1).

Then the number of zeros of R(k1) is given by the sum of the zeros of f+ (k1) and f− (k1).
Consider now the contour in the complex k1 -plane as shown in Figure 2. Note that one
may have to choose the radii of the semicircles quite large to have the zeros of f2 (k1) inside
C, since the functions g(k1) and r(k1) are analytical and continuous inside the contour C
and satisfy the condition =g(k1) =q =r(k1) =. Then, according to Rouche’s theorem, the
function g(k1)2 r(k1) has the same number of zeros as g(k1) inside C. It will be clear that
g(k1), as a quasipolynomial of the second order, has two roots. Thus, the function R(k1)
has four different roots.

Now some particular cases will be considered when loads are moving subcritically,
transcritically and supercritically. Mixed cases can be obtained by the superposition of
these ‘‘pure’’ cases.
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Figure 2. Branch points and cuts in the case bq 0, contour in k1-plane.

3.1.   (bj Q a, 1)

If the velocity of the load is smaller than cs , cm (bj Q a, 1), then equation (8) can be
rewritten in the form

Um
1 (x, y, t)=−

P1

2p g
a

−a

×
exp{i(x+ b1 t)k1}

00(1− b2
1 )k2

1 + gz(a2 − b2
1 )k2

1 +11
2

− (1− b2
1 )2k4

1 exp0−2d
a

z(a2 − b2
1 )k2

1 +111
×6((1− b2

1 )k2
1 + gz(a2 − b2

1 )k2
1 +1)exp6−by−

d
2 b z(a2 − b2

1 )k2
1 +1

a 7
−(1− b2

1 )k2
1 exp 6−by+

d
2 b z(a2 − b2

1 )k2
1 +1

a 7exp0−d
a

z(a2 − b2
1 )k2

1 +117 dk1,

(12)

with Re z(a2 − b2
1 )k2

1 +1q 0. Equation (12) consists of a symmetrical part related to the
load {y= d/2, x=−b1 t} and an asymmetrical part due to the presence of the other string.
By using equation (12) one can easily obtain the expression for Um

2 (x, y, t) by performing
the substitutions

P1 :P2, b1 :b2, x+ b1 t:x− b2 t, =y2 d/2=:=y3 d/2=. (13)

The solution of the ‘‘two loads problem’’ is then given by equation (9).
In order to integrate equation (12) and the analogous equation for Um

2 , one has to
determine the locations of the singular points of the integrand (12) in the complex k1 -plane
(the analogous reasoning for Um

2 is omitted). The integrand of equation (12) is a
multiple-valued function because of the presence of the radical G(k1)=z(a2 − b2

1 )k2
1 +1.

Branch points occur when G(k1)=0. Thus, one has two branch points on the imaginary
k1 -axis: h1,2 =2i/za2 − b2

1. Also the four zeros of the denominator of the integrand in
equation (12) are located on the imaginary axis.
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From a physical point of view the fact that the poles are on the imaginary axis
corresponds to a moving load which does not radiate any elastic waves into the
string. Further, it corresponds to the absence of wave processes in the membrane.
Therefore, one can integrate equations (12) and (13) along the real k1 -axis using a
standard numerical method. The results for two moments of time are shown in
Figures 3(a, b). As confirmed in the figures, the moving loads excite a local eigenfield
moving with the loads.

If alpha is reducing, a=(cm /cs ):b and (bQ aQ 1), so that for b= aQ 1,
one has a stationary eigenfield with singularities (with a jump in the first
derivatives).

3.2.  

Again two loads are considered moving subcritically in an opposite direction along the
strings. Each load generates a spatially extended eigenfield that is moving with it.
Therefore, the loads will affect each other through the membrane by means of the
eigenfields, especially when the loads are getting close to one another, as depicted in
Figure 4(a). This topic will be studied in this section.

A single load moving along one of the strings on the elastically supported membrane
has an eigenfield which consists of a central–symmetrical part and an asymmetrical part
in the frame of reference connected to the load, as shown earlier in equation (12). (Later
on we will discuss the effect of the asymmetrical part.)

The central–symmetric part of the eigenfield is such that no additional force has to be
introduced to maintain the constant motion of the load. Then the reaction of the
elastic system N is vertical due to the symmetry and has no horizontal projection; see
Figure 4(b).

An additional asymmetry of the eigenfield may occur, for instance, due to the presence
of the other load or if the load excites elastic waves; see Figures 4(c, d). Due to the
asymmetry in the superposed eigenfields a horizontal force Ff =−Fr has to be applied to
balance the reaction Fr (which is the horizontal projection of the string reaction N in the
loading point) to maintain the defined law of constant motion of the load.

The load creates an elastic field of vertical displacements around itself, and then a certain
force acts on every other object located in this field. The gradient of that elastic field is

Figure 3. Membrane displacements for two moments of time (t) for P1 =P2 =1, a=0·5, b1 =0·45, b2 =0·35.
(a) For t=−0·8; (b) for t=0·0.
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Figure 4. Qualitative pictures for the current topic. (a) Top view of two moving loads along strings on a
membrane; the domains of the substantial deformations under the loads are shaded; (b) profile of the symmetric
eigenfield in the ‘‘homogeneous’’ case; (c, d) profiles of the elastic system in cases when the load generates elastic
waves (c), or two loads are placed near each other (d).

a measure of this force. This force can also be obtained by a geometrical analysis of
Figures 4(c) or (d). Then the expressions for the interaction forces are given by [6]

F21
r =(F21

rx , F21
ry )=−P1 grad Um

2 (x=−b1 t, y= d/2, t)=−P1 0 1

1x
Um

2 ,
1

1y
Um

2 1bx=−b1t

y= d/2

,

F12
r =(F12

rx , F12
ry )=−P2 grad Um

1 (x= b2 t, y=−d/2, t)=−P2 0 1

1x
Um

1 ,
1

1y
Um

1 1bx= b2 t

y=−d/2

,

(14)

where Fij
r , i, j=1, 2 is the interaction force acting at the jth load due the ith load. Note

that the asymmetrical part of the eigenfield of the load, mentioned earlier, occurs due to
the other string (we call it the internal asymmetry). It results in a constant repulsive lateral
force with respect to the string. This force is negligibly small compared with the interaction
force to be discussed now.

Now, the lateral component of the interaction force Fij
ry (t) with respect to the string will

be studied.
For the case that the loads (P1, P2) are moving subcritically, F12

ry (t) is evaluated by using
equations (14) and (12) for the displacements Um

1 for three distances between the strings
and for three velocities of the first load. The results are shown in Figures 5(a, b).

As shown in the figures, the lateral component of the interaction force F12
ry (t) is positive.

This implies that the strings will attract each other in the case when the two vertical loads
have the same direction. The figures further show that the force increases when the distance
between the loads decreases. In this sense the interaction force is analogous to Newton’s
gravitational interaction force [7]. Also an analogy can be made with respect to the law
of Faraday from electromechanics; however, this analogy is more conceptual.
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3.3.   (aQ bj Q 1 or 1Q bj Q a).

Case 1: aQ b1 Q 1(cm QV1, V2 Q cs )

Suppose that the first load is moving faster than the wave velocity in the membrane but
slower than the wave velocity in the string (aQ b1 Q 1). Then equation (8) can be rewritten
in the form

Um
1 (x, y, t)=

−
P1

2p g
a

−a

exp{i(x+ b1 t)k1}

00(1− b2
1 )k2

1 − igz(b2
1 − a2)k2

1 −11
2

− (1− b2
1 )2k4

1 exp0i 2d
a

z(b2
1 − a2)k2

1−111
×6((1− b2

1 )k2
1 − igz(b2

1 − a2)k2
1 −1)exp6iby−

d
2 b z(b2

1 − a2)k2
1 −1

a 7
−(1− b2

1 )k2
1 exp6iby+

d
2 b z(b2

1 − a2)k2
1 −1

a 7exp0i d
a

z(b2
1 − a2)k2

1 −117 dk1, (15)

with Im z(b2
1 − a2)k2

1 −1q 0. The denominator of the integrand in equation (15) has four
imaginary zeros in the complex k1 -domain, which have been calculated numerically for
a=0·5, b=0·7. This implies that the moving load does not excite elastic waves in the
strings.

Two branch points h1,2 =1/zb2
1 − a2 are located on the real k1 -axis. In order to evaluate

the integral (15) by contour integration one has to investigate the locations of the branch
points and zeros after introducing a small dissipation. One, therefore, introduces the
member 2dUt (d:+0) in equation (2), which describes an additional viscous dissipation

Figure 5. The y-component of the interaction force F12
r (t) for a=0·5, P1 =P2 =1. (a) For three distances d

between the strings and b1 = b2 =0·40: . . . . , d=0·4; – – –, d=0·6; ——, d=1·0. (b) For three velocities b1 of
the first load and b2 =0·42, d=1·0: . . . . , b1 =0·48; – – –, b1 =0·40; ——; b1=0·20. The time t=0·0
corresponds to the minimum distance between loads.
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Figure 6. Branch points and cuts in the case aQ b1 Q 1; contour of integration in the lower half-plane.

in the foundation. After introducing this small dissipation the branch points move into
the lower half-plane:

h1,2 =−
idb1

(b2
1 − a2)

20 1
zb2

1 − a2
+O(d2)1, Q(k1)= k2

1 (b2
1 − a2)+2idb1 k1 −1,

Im (zQ(k1))q 0 with Q(h1,2)=0. So it is appropriate to cut the plane along a line
Im Q(k1)=0 as qualitatively shown in Figure 6. Then the radical zQ(k1) has a positive
imaginary part everywhere on the path of integration. Following Jordan’s lemma [5]: for
arg1 (z1, y)q 0 and arg2 (z1, y)q 0, one can close the path of integration (along the real
axis) in the upper half-plane and for arg1 (z1, y), arg2 (z1, y)Q 0 in the lower half-plane,
where

arg1 (z1, y)=6z1 + by−
d
2 bXb2

1

a2 −17, arg2 (z1, y)=6z1 +0d+ by+
d
2 b1Xb2

1

a2 −17,

(16)

and z1 = x+ b1 t. The expressions (16) describe the two Mach-cones in which the excited
wave fields are confined.

Now one can reduce the integral (15) to a form suitable for numerical analysis; see the
Appendix, equations (A2) and (A3). Figures 7(a, b) present the results of the numerical
evaluation of equations (A2) and (A3). The figures show that the transcritically-
moving load P1 (aQ b1 Q 1) radiates elastic waves into the membrane. The wave field is
located inside the cone analogous to the Mach-cone in acoustics, which satisfies the
equation

j1 =−by−
d
2 bXb2

1

a2 −1=−by−
d
2 b 1

tan (u)
, where sin (u)= a/b1 = cm /V1.
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Figure 7. Different views of the membrane displacements for a=0·5, b1 =0·7, d=1·0. 1 and 2 denote the
first and second strings.

The wave field reflecting with an opposite sign by the second string gives a secondary
Mach-cone described by the equation

j1 =−0d+ by+
d
2 b1Xb2

1

a2 −1=−0d+ by+
d
2 b1 1

tan (u)
,

see also Figure 8. A part of the wave energy is transferred to the outer membrane.
Furthermore, the secondary Mach-cone reflected partly by the first string again forms a
third Mach-cone and so on. The amplitudes of successive Mach-cones decrease with the
number of reflections due to the transfer of energy to the membrane. As can be seen in
Figure 7(a), the second string reflects the wave field effectively since no wave energy
propagates along the string. Nevertheless, the waves in the membrane excite a vibration

Figure 8. The moving load (b1) generates a wave field which is confined inside the Mach-cone M1, the waves
are partly reflected by the second string 2, and form the secondary Mach-cone M2, and so on.
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Figure 9. The lateral force which is acting at the second load when it is moving in the field of the transcritically
moving first load, for the parameters a=0·5, b1 =0·7, b2 =0·3, d=1·0.

in the string and the amplitude of this vibration attenuates with increasing distance from
the source point.

Now, the lateral force is determined which is acting at the second load when it is moving
subcritically in the given elastic field generated by the transcritically moving first load.
According to equation (14), using equations (A2) and (A3) and a standard numerical
routine, the numerical expression for the lateral force was derived. The results of the
evaluations are shown in Figure 9. The graph shows that the lateral force that is acting
at the second load has an impact character. The first quasi-impact is the most powerful
one because the load is crossing the border of the first Mach-cone. The next quasi-impacts
are smaller and smoother than the previous ones and they originate due to the crossing
of the borders of the succeeding Mach-cones.

From the practical point of view, such behaviour of the lateral force can be quite
dangerous for the stability of the passing trains. However, this model cannot give any
qualitative estimation which is suitable for practice.

Case 2: 1Q b1 Q a(cs QV1, V2 Q cm )

In this case the displacement of the system accounting for the viscous dissipation in the
foundation is given by

Um
1,d (z1 = x+ b1 t, y)

=
P1

2p g
a

−a

exp{iz1 k1}

0((b2
1 −1)k2

1 − gzs(k1, d))2 − (b2
1 −1)2k4

1 exp0−2d
a

zs(k1, d)11
×6((b2

1 −1)k2
1 − gzs(k1, d))exp6−by−

d
2 b zs(k1, d)

a 7
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−(b2
1 −1)k2

1 exp6−0d+ by+
d
2 b1 zs(k1, d)

a 77 dk1, (17)

with Re zs(k1, d)q 0, where s(k1, d)= k2
1 (a2 − b2

1 )−2idk1 +1, Um
1 (z1, y)= limd:+0

Um
1,d (z1 = x+ b1 t, y). The integrand of equation (17) has two branch cuts, which are

located in the upper and lower complex half-plane k1,

h1,2 = i
db1

(a2 − b2
1 )

2 i0 1
za2 − b2

1

+O(d2)1,

and four poles in the lower half-plane, following from analysis of the denominator of
equation (18), as depicted in Figure 10. If one let d:+0 the poles move to the real k1 -axis
and are related to the wave processes in the strings.

After these preliminary remarks one may integrate expression (17) by contour
integration. Noting that for z1 q 0 the path of integration can be closed in the upper
half-plane and for z1 Q 0 in the lower complex k1 -half-plane, one can find the
displacements of the system; see equations (A4) and (A5) in the Appendix.

Figures 11(a, b) represent the results of the numerical calculations of expressions (A4)
and (A5) for two distances between the strings. The figures show that the
transcritically-moving load P1 (1Q b1 Q a) generates waves in the first string. Further, the
oscillating string excites waves into the membrane. These waves are attenuated during
propagation through the membrane, and are exciting undamped waves into the second
string (due to the system dispersion properties). Therefore, the amplitude of that
‘‘secondary wave’’ depends on the distance between the strings; see Figure 11(b). It can
further be shown that the strings are interacting through the membrane with a
characteristic retardation in time due to the finite wave velocity in the membrane.

In order to describe qualitatively the interaction between the strings, one can introduce
a parameter l3 1/z1− (b2

1 /a2), which can be obtained from equation (17). Figures 12
(a, b) represent the displacements of the strings for d=1·0 and d=3·0. They can be
interpreted as the motion of two coupled oscillators. When the distance is substantially
smaller than l1 3·3, then one has a strong interaction between the strings; see

Figure 10. Branch points (d:+0) and cuts in the case 1Q b1 Q a; contour of integration in the upper
half-plane.
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Figure 11. Displacement of the membrane for two distances between the strings for a=1·8, b1 =1·5. (a) For
d=1·0; (b) for f=3·0.

Figure 12(a). Figure 12(b) shows the case where the distances are approximately equal
to l.

For the present case, the lateral force which acts at a subcritically moving load in the
elastic field exerted by a transcritically moving other load will be investigated. Figure 13
presents the results of numerical calculations by using equations (14), (A4) and (A5) for
the distances d=1·0, 3·0 between the strings. As shown in the figures, the lateral force
oscillates with respect to time and the amplitude of the force obviously depends on the
parameter d.

3.4.   (1, aQ bj )
Now the velocity of the load P1 is higher than the wave velocity in the membrane and

in the strings. In this case, the moving load generates elastic waves both in the membrane

Figure 12. Displacement of the strings for two distances between the strings for a=1·8, b1 =1·5, l1 3·3. (a)
For d=1·0; (b) for d=3·0: ——, Us1; . . . . , Us2.
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Figure 13. The lateral force which is acting at the second load when it is subcritically moving in the field of
a transcritically moving first load, for a=1·8, b1 =1·5, b2 =0·8. (a) For d=1·0; (b) for d=3·0.

and in the strings. The displacements of the system are described by the expression

Um
1,d (z1 = x+ b1 t,y)

=
P1

2p g
a

−a

exp{iz1 k1}

0((b2
1 −1)k2

1 + igzs(k1,d))2 − (b2
1 −1)2k4

1 exp0i 2d
a

zs(k1, d)11
×6((b2

1 −1)k2
1 + igzs(k1, d))exp6iby−

d
2 bzs(k1, d)

a 7
−(b2

1 −1)k2
1 exp 6i0d+ by+

d
2 b1 zs(k1, d)

a 77 dk1, with Im zs(k1, d)q 0,

(18)

where s(k1, d)= k2
1 (b2

1 − a2)+2idk1 −1, Um
1 (z1, y)= limd:+0 Um

1,d (z1 = x+ b1 t, y). The
integrand of expression (18) has two branch points h1,2 and four poles 2k	 1,2 in the lower
k1 -half-plane; see Figure 14. The branch points are h1,2 =−idb1 /q2 2 (1/q−O(d2)),
q=zb2

1 − a2. Furthermore, two of the poles, say 2k	 1, coincide with the branch points
but after introducing an additional dissipation in the strings one can separate them. The
branch cuts have been chosen along the lines Im zs(k1, d:0)=0, as shown in Figure 14.
The present location of the poles and branch points corresponds to wave processes in the
strings and the membrane inside the Mach-cones, arg1 (z1, y), arg2 (z1, y)Q 0,
where

arg1 (z1, y)=6z1 + by+
d
2 bXb2

1

a2 −17, arg2 (z1, y)=6z1 +0d+ by+
d
2 b1Xb2

1

a2 −17.

Outside these cones, the system of strings and membrane is not excited. After these
considerations, one can reduce the integral (18) to a form which is suitable for numerical
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Figure 14. Branch points and cuts in the supercritical case (bj q a, 1); contour of integration in the lower
half-plane.

calculations; see equations (A6) and (A7) in the Appendix. The results of the
numerical calculations are shown in Figures 15(a, b). As can be seen from the graphs,
the wave field is located inside the Mach-cones (arg1,2 (z1, y)Q 0). The waves, reflecting
several times between strings, are attenuating due to the transfer of part of their
energy into the membrane outside the strings. Furthermore, for the ‘‘two-string
system’’ the wave field does not exhibit a jump in the displacements on the Mach-cone
border, as was found for the ‘‘one-string system’’ [4].

Now, the lateral force is determined, which is acting at the second subcritically
moving load in the elastic field generated by a supercritically moving first load. The
graph of this force is presented in Figure 16. As shown in the figure, the lateral force
has an impact character. Before passing the border of the Mach-cone (tQ t*, t*q 0)
the force is zero because the system is not yet excited there. On the cone border
the lateral force has a jump due to the discontinuity of the first derivative of
the membrane displacement. In other words, when one of the loads is crossing the
border of the Mach-cone, where displacements are varying very fast, the load ‘‘feels’’
impact.

Figure 15. The displacements of the system when the load is supercritically moving along the first string 1,
d=1·0. (a) For a=0·9, b1 =1·5; (b) for a=1·5, b1 =1·9.
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Figure 16. The lateral force which is acting at the second subcritically moving load in the field of a
supercritically moving first load, for a=0·9, d=1·0, b1 =1·5, b2 =0·5.

4. CONCLUSIONS

In this paper the uniform motion of two constant loads moving in opposite directions
along two parallel strings on an elastically supported membrane has been studied. The
steady state behaviour of the system has been derived. For subcritical, transcritical and
supercritical load velocities the displacement fields have been calculated and presented as
graphs.

The results show that the presence of a second string essentially affects the dynamic
behaviour of the system (compared to that of the ‘‘one-string case’’ [4]), especially when
the dimensionless distance between the strings is relatively small.

A subcritically moving load along a string is shown to have a stationary eigenfield of
vertical displacements with a symmetrical and an asymmetrical part with respect to the
frame of reference related to the load. By virtue of this last part, repulsive lateral force
(with respect to the string) acts at the load.

In the case of transcritical and supercritical motion, the load generates waves in the
system. The resulting vertical displacements in the system show a quite inhomogeneous
character with large spatial gradients.

Further, the lateral components of the interaction force has been determined, which is
acting at the loads, when two loads are moving in opposite directions along the strings.
The character and amplitude of this interaction force depends on the velocity of the loads
and the distance between the strings respectively. In particular, cases have been studied
when one of the loads is moving subcritically in a field of the other load. For subcritically
moving loads, the lateral force depends smoothly on time and it corresponds to an
attraction between the loads and strings. Hence, it has a qualitative analogy with
gravitational interaction.

When one of the loads is moving supercritically or transcritically then the direction of
the lateral force that is acting at the other load is fluctuating in time. Moreover both in
one of the transcritical cases, in which the wave velocity in the string is higher than the
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membrane wave velocity (aQ bj Q 1), and in the supercritical case this force is shown to
have an impulsive character.
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APPENDIX

A.1.  

Um
2 (x, y, t)=

P2

2p g
a

−a

×
exp{i(x− b2 t)k1}

0((b2
2 −1)k2

1 + igz(b2
2 − a2)k2

1 −1)2 − (b2
2 −1)2k4

1 exp0i 2d
a

z(b2
2 − a2)k2
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2 −1)k2

1 + igz(b2
2 − a2)k2

1 −1)exp6iby+
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2 b z(b2
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a 7

−(b2
2 −1)k2

1 exp6iby−
d
2 b z(b2

2 − a2)k2
1 −1

a 7exp0i d
a

z(b2
2 − a2)k2

1 −1)7 dk1. (A1)

with Im z(b2
2 − a2)k2

1 −1q 0.
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A.2.   1

For arg1 (z1, y), arg2 (z1, y)q 0,

Um
1 (z1, y)=−P1 s

+k	 1,+ k	 2

i
(k2

1 x2 − igzk2
1 q−1)

d
dk1

B+ (k1)
exp6i0k1 z+ by−

d
2 b zk2

1 q2 −1
a 17

+P1 s
+k	 1,+ k	 2

i
(k2

1 x2)
d

dk1
B+ (k1)

exp6i0k1 z+0d+ by−
d
2 b1 zk2

1 q2 −1
a 17.

(A2)

For arg1 (z1, y), arg2 (z1, y)Q 0,

Um
1 (z1, y)=P1 s

−k	 1,− k	 2

i
(k2

1 x2 − igzk2
1 q2 −1)

d
dk1

B+(k1)
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− IBr (z1, y), (A3)

where x2 =1− b2
1 , q2 = b2

1 − a2,

IBr (z1, y)=A g
a
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Re 6i sin (kz1)0(kx)2 + igz(kq)2 −1
B− (k)
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A.3.   2

For z1 q 0,

Um
1 (z1 = x+ b1 t, y)=A g
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For z1 Q 0,
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where

A=P1 /(2p), x=zb2
1 −1, q=za2 − b2

1 ,

f1 (y, k)= by−
d
2 b z(kq)2 +1

a
, f2 (y, k)=0d+ by−

d
2 b1 z(kq)2 +1

a
,

and

B(k1)= ((k1 x)2 − gz(k1 q)2 +1)− (k1 x)4 exp0−2d
a

z(k1 q)2 +11,

B+ (k)= ((kx)2 + igz(kq)2 −1)2 − (kx)4exp0i 2d
a

z(kq)2 −11,

B− (k)= ((kx)2 − igz(kq)2 −1)2 − (kx)4exp0−i
2d
a

z(kq)2 −11.

IBr is the integral along the branch cut, which has the same form as the two integrals in
the expression for z1 q 0 but one has to substitute z1:−z1.
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A.4.  

For arg1 (z1, y), arg2 (z1, y)q 0,

Um
1,d (z1 = x+B1 t, y)=0. (A6)

For arg1 (z1, y), arg2 (z1, y)Q 0,

Um
1 (z1, y)=P1 s

2k	 1,2 k	 2

i
(k2

1 x2 + igzk2
1 q2 −1)

d
dk1

B+ (k1)
exp6i0k1 z+ by−

d
2 b zk2

1 q2 −1
a 17

−P1 s
2k	 1,2 k	 2

i
(k2

1 x2)
d

dk1
B+ (k1)

exp6i0k1 z+0d+ by−
d
2 b1 zk2

1 q2 −1
a 17

+A g
a

h

Re {i sin (kz1)0(kx)2 + igz(kq)2 −1
B+ (k)

exp(if1 (y, k))

−
(kx)2 − igz(kq)2 −1

B− (k)
exp(−if1 (y, k))17 dk

+A g
a

h

Re 6i sin(kz1)0 (kx)2

B− (k)
exp(if2 (y, k))

−
(kx)2

B+ (k)
exp(−if2 (y, k))17 dk, (A7)

where

A=P1 /(2p), h=1/zb2
1 − a2, x=zb2

1 −1, q=zb2
1 − a2,

f1 (y, k)= by−
d
2 b z(kq)2 −1

a
, f2 (y, k)=0d+ by−

d
2 b1 z(kq)2 −1

a
,

B+ (k1)= ((k1 x)2 + igz(k1 q)2 −1)2 − (k1 x)4exp0i 2d
a

z(k1 q)2 −11,

B−(k1)= ((k1 x)2 − igz(k1 q)2 −1)2 − (k1 x)4exp0−i
2d
a

z(k1 q)2 −11.


